Genetic Differentiation and Delimitation between Ecologically Diverged Populus euphratica and P. pruinosa
نویسندگان
چکیده
BACKGROUND The fixed genetic differences between ecologically divergent species were found to change greatly depending on the markers examined. With such species it is difficult to differentiate between shared ancestral polymorphisms and past introgressions between the diverging species. In order to disentangle these possibilities and provide a further case for DNA barcoding of plants, we examine genetic differentiation between two ecologically divergent poplar species, Populus euphratica Oliver and P. pruinosa Schrenk using three different types of genetic marker. METHODOLOGY/PRINCIPAL FINDINGS We genotyped 290 individuals from 29 allopatric and sympatric populations, using chloroplast (cp) DNA, nuclear (nr) ITS sequences and eight simple sequence repeat (SSR) loci. Three major cpDNA haplotypes were widely shared between the two species and between-species cpDNA differentiation (F(CT)) was very low, even lower than among single species populations. The average SSR F(CT) values were higher. Bayesian clustering analysis of all loci allowed a clear delineation of the two species. Gene flow, determined by examining all SSR loci, was obvious but only slightly asymmetrical. However, the two species were almost fixed for two different nrITS genotypes that had the highest F(CT), although a few introgressed individuals were detected both in allopatric and sympatric populations. CONCLUSIONS The two species shared numerous ancestral polymorphisms at cpDNA and a few SSR loci. Both ITS and a combination of nuclear SSR data could be used to differentiate between the two species. Introgressions and gene flow were obvious between the two species either during or after their divergence. Our findings underscore the complex genetic differentiations between ecologically diverged species and highlight the importance of nuclear DNA (especially ITS) differentiation for delimiting closely related plant species.
منابع مشابه
The draft genome sequence of a desert tree Populus pruinosa
Populus pruinosa is a large tree that grows in deserts and shows distinct differences in both morphology and adaptation compared to its sister species, P. euphratica. Here we present a draft genome sequence for P. pruinosa and examine genomic variations between the 2 species. A total of 60 Gb of clean reads from whole-genome sequencing of a P. pruinosa individual were generated using the Illumi...
متن کاملRapidly Evolving Genes and Stress Adaptation of Two Desert Poplars, Populus euphratica and P. pruinosa
Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphrati...
متن کاملDistinct patterns of natural selection in Na+/H+ antiporter genes in Populus euphratica and Populus pruinosa
Salt tolerance genes constitute an important class of loci in plant genomes. Little is known about the extent to which natural selection in saline environments has acted upon these loci, and what types of nucleotide diversity such selection has given rise to. Here, we surveyed genetic diversity in three types of Na+/H+ antiporter gene (SOS, NhaD, and NHX, belonging to the cation/proton antiport...
متن کاملGenome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars
Trichomes, which are widely used as an important diagnostic characteristic in plant species delimitation, play important roles in plant defense and adaptation to adverse environments. In this study, we used two sister poplar species, Populus pruinosa and Populus euphratica-which have, respectively, dense and sparse trichomes-to examine the genetic differences associated with these contrasting p...
متن کاملAncient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex
How genome divergence eventually leads to speciation is a topic of prime evolutionary interest. Genomic islands of elevated divergence are frequently reported between diverging lineages, and their size is expected to increase with time and gene flow under the speciation-with-gene-flow model. However, such islands can also result from divergent sorting of ancient polymorphisms, recent ecological...
متن کامل